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1    Introduction 

During the last several decades, the inverse scattering problems for the Helmholtz 
equation have enjoyed a remarkable degree of popularity, both in pure and applied 
contexts (see, e.g., [2], [3]). A number of algorithms have been proposed for 
the numerical treatment of these problems, in such environments as medical 
diagnostics, non-destructive testing, anti-submarine warfare, oil exploration, etc. 
In the design of such a scheme, three major problems have to be overcome. 

1. The problem is highly non-linear, even in its purely mathematical form. In 
the one-dimensional case, the problem can be reduced to a linear one, but the 
procedure is not stable numerically. 

2. Once a mathematically valid inversion scheme is constructed, it may or may 
not be stable numerically. In fact, no numerically robust schemes seem to exist 
at this time, except in one dimension. 

3. The cost of applying the scheme on the computer tends to be extremely high, 
except in the one-dimensional case. 

The existing attempts to solve inverse scattering problems for the Helmholtz 
equation can be roughly subdivided into four groups. 

1. Linearized inversion schemes, attempting to approximate the inverse scattering 
problem by the problem of inverting an appropriately chosen linear operator (see, 
for example, [3]). 

2. Methods based on non-linear optimization techniques, attempting to recover 
the parameters of the problem iteratively, by solving a sequence of forward scat- 
tering problems (see, for example, [4], [5], [6]). 

3. Gel'fand-Levitan and related techniques, converting the Helmholtz equation 
into the Schrödinger equation, the inverse problem for the latter being reducible 
to the solution of a linear Volterra integral equation (see, for example, [2], [7]). 

4. Techniques based on the trace formulae, connecting the high-frequency be- 
havior of the solutions of the Helmholtz equation with the local values of the 
parameters to be recovered (see, for example, [10], [11], [12]). 

From the mathematical viewpoint, the one-dimensional problem was satisfac- 
torily solved in the early fifties (see [7], [8]). However, procedures of the type 
described in [7] and [8] do not lead to stable numerical algorithms. Existing 
stable and efficient schemes in one dimension are based on the trace formulae. 
They consist of constructing a Riccati equation for some function of the solution 
of the Helmholtz equation (such as the impedance or the scattering coefficient), 
and combining it with a trace formula. The result is a system of ordinary differ- 
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ential equations that can be solved numerically, and a proper choice of the trace 
formula ensures stability and rapid convergence of the process (see, for example, 
[10], [11], and [16]). 

Attempts to generalize this approach to higher dimensions have not lead to 
effective numerical procedures; however, a collection of powerful mathematical 
apparatus has been developed (see [9] and [10] for quantum scattering in one 
dimension; [13], [14] and [17] for electrical impedance scattering; and [15] for 
Schrödinger scattering in three dimensions). One of the more promising tools 
developed to-date is the concept of the scattering matrix (or of the Dirichlet-to- 
Neumann map) and the differential equations governing it (see [13], [14], [17]). 

The present work is the beginning of a series of papers addressing the solution 
of the inverse scattering problem for the Helmholtz equation in two dimensions. 
In this paper, our goal is to derive a system of differential equations for the 
scattering matrices which 

1. Directly governs the whole behavior of the scattering problem, 

2. Can be easily implemented numerically with any prescribed precision. 

In the subsequent papers, we will use this apparatus to design the inversion 
algorithms. Specifically, in the second paper, we will present an inverse scattering 
scheme based on the trace formula which is a direct extension to the one employed 
in [16]. The algorithm is quite satisfactory analytically, but requires excessive 
amounts of CPU time. Finally, in the third paper to be published, we will present 
a much accelerated version of the algorithm. 

The principal results of the paper are the Riccati equations for the scattering 
matrices in cylindrical coordinates. The paper is organized as follows. In Sec- 
tion 2, we summarize the relevant properties of the Helmholtz equation in two 
dimensions, and introduce the scattering matrices.  In Section 3, we derive the 
differential equations which the scattering matrices satisfy. 

2    Mathematical Preliminaries 

In this section, we will discuss the Helmholtz equation and its associated scatter- 
ing problems. First in Section 2.1, we introduce common and special usages of 
notation in this paper. In Section 2.2, properties of the Bessel functions are pre- 
sented. Section 2.3 is then devoted to the scattering problems for the Helmholtz 
equation. Finally in Sections 2.5 and 2.6, we define scattering matrices corre- 
sponding to three special scattering problems. 



2.1    Notation 

We will denote by C+ the set of all complex numbers with nonnegative imaginary 
part, and by S1 C C the unit circle in the complex plane defined by the formula 

l*l=i; (i) 

we will assume that S1 is parameterized by its arc length. We will define £ as 
the linear space of all two-sided sequences of complex numbers 

*={tfm},m = 0,±l,±2,..-}. (2) 

In agreement with standard practice, we will denote by £2 the subspace of £ 
consisting of all sequences £ such that 

oo 

E    Um|
2<oo, (3) 

m= — oo 

and by £°° the subspace of £ consisting of all sequences £ such that 

sup | (m |< oo. (4) 
m 

Let F : ^(S1) >—> £2 denote the Fourier transform converting a square 
integrable function on the circle S1 into its Fourier series, so that the expression 

+oo 

/(*)=    £   ^eime (5) 
m= — oo 

can be written in the matrix form 

/ = F-*t- (6) 

When it is necessary to explicitly show the dependence of F_1£ on the variable 6, 
the subscript 0 will be suffixed to the linear mapping -F-1; therefore the expression 
(6) can be rewritten as 

/(*) = Ff1*- (7) 

In agreement with standard practice, we denote by Jm the Bessel function 
of the first kind of order m, and by Hm the Hankel function of the first kind of 
order m. We will denote by Jz, Hz the infinite diagonal matrices 

Jz   =   diag{...,J-1(z),J0(z),Ji(z),...}, (8) 

Hz   =   diag{...,H^(z),H0(z),Hi(z),...}. (9) 



Given R > 0, we will denote by D(R) the disk 

D(R) = {(r,6)   |  r<R}, (10) 

by E(R) the exterior of D(R) 

E(R) = {(r,0)   |  r>R}, (11) 

and by A(R, h) for /* > 0 the annulus 

A(R,h) = {(r,9)   |  #<r <# + /*}. (12) 

Further, for an arbitrary x <= R2, we will denote by D(x,R) the disk of radius i? 
centered at x. For a continuous function q € C(D(R)), and a real number r < Ä, 
we define the mapping Qr : C(S'1) i-> C(5'1) by the formula 

(Qr-W) = q{r,e)-f{0). (13) 

Given a function g : i?2 \-+ R1, and a set Ac R2,we will define the function 
q^, the restriction of 5 on A, via the formula 

qA{x) = q(x)-X(A), (14) 

with x(*4) the characteristic function of A. 
For an arbitrary z € C, we will denote by X2 the linear space of all two-sided 

complex sequences {ßm} such that for some c > 0, 

'2|m^M 

£m I VI m I •    —! L <c (15) 
e • z 

for all integer m. We will denote by Yz the linear space of all two-sided complex 
sequences {am} such that for some c > 0, 

2j^| j      < C (16) 

for all integer m. 

2.2    Several Classical Lemmas 

In this subsection, we summarize several classical results describing the behavior 
of certain special solutions of the Helmholtz equation. The following lemma can 
be found, for example, in [21]. 



Lemma 2.1 Let m be an integer. Suppose that Jm is the Bessel function of 
order rn, and Ym is Neumann function of order m. Suppose further that Hm is 
the first kind Hankel function of order m defined by the formula 

■"m — "m   i   1 ' Im- 

Then 

(I) Jm = (-l)mJ-m, and Hm = (-l)mH-m. 

(II) For any z e C+, 

(-1)" /^2" 
/0(2)   =   £ W  V2 

with 7 = 0.5772 ... the Euler constant. 

(Ill) For any z G C+, 

2m 

(-1)" Y- 1 

(n!)2 ±^ m m=l 

lim Jm(z) • v27rm 
m—KX> e • z = 1, 

anc 

lim Hm(z) 
Km    I e • z 

~2~' \2m 
i. 

In other words, for a fixed z G C+ as m increases, Jm(z) decays as 

1 
Jm(z) 

/e • z 

\/27rm    V2ra 

and Hm(z) grows as 

Hm{z) ~ -i 
■Km    \e • z 

2m 

(IV) For a fixed m and large z G C+, 

Hm(z) exp 
" ( ■K ■K 
I • r - m — 

2 ~ 4 + o(.-1)} 

More specifically, for z G C+ and \z\ > 2, 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 



with 

K*)l < Arr (27) o ■ \z\ 

The following lemma provides an upper bound for the Hankel function H0. 

Lemma 2.2 Suppose that z € C+ is a complex number in the upper half of the 
complex plane.   Then 

I H0{z) |< 2 (28) 

for all | z \> 2, and 

|#o(2)|<2+|ln(|z/2|)| (29) 

for all | z |< 2. 

Proof. For |z| > 2, formula (28) follows directly from (26). For \z\ < 2, formula 
(29) follows directly from the combination of (17), (18) and (19). □ 

For a domain ti C -R2, a point x 6 -R2, and a positive number k, we will denote 
by \Q\ the area of 0, and by P(a;, ti) the real number defined by the formula 

P(x,il)=  I |ln(Ä:||x-^||)|de. (30) 
JQr\D(x,l/k) 

The following technical lemmas provide estimates for P(x,Q). 

Lemma 2.3 For arbitrary domain Q, C R2, point x G R2, and positive number 
k e R\ 

P(x,ü)<P(x,D(x,p)) (31) 

provided that 

Proof. It obviously follow from (32) that 

1. The domain Q and the disk D(x, p) have the same area, 
2. D(x, p) is contained in D(x, 1/k) 

Assuming that 0 does not coincide with D(x,p), that is, assuming that the two 
domains 

A   =   n\D(x,p), (33) 

B   =   D(x,p)\n (34) 



have non-zero areas |J4| = \B\, we intend to show that 

P(x,Ü)<P(x,D\xJ^\). (35) 

Without loss of generality, we may assume that 0 is contained in D(x, 1/k). It 
follows from (32) that for any & € A C D(x, 1/k) and £2 € B C D(x, 1/k) 

we have 

Therefore, 

k\\x-^\\<k-p<k\\x-^\\<l, 

Ik-611 < Ik - 611- 

|ln(Ä;||x-6||)|<|ln(fc|k-6ll)l 

which establishes (31). □ 

Lemma 2.4 For arbitrary domain fl C R2 and point x G i?2, 

(36) 

(37) 

(38) 

P(x,n)<B-h + In    I Jfc 
'|n| 

7T 
(39) 

Proof. We first consider the case when the area of 0 is no less than that of the 
disk D(x, 1/k), that is, 

N>^ 
7T 

k2 (40) 

Under this assumption, it immediately follows from (30) that 

P(x,tt)   <    I \Hk\\x-i\\/2)\d( 
JD(x,l/k) 

/•27T    rl/k 

=    — /      /      ln(Ä;r)7 
Jo    Jo 

)rdrd9 

jr_<JO| 
2k2 ~   2 ' 

(41) 

from which (39) follows.   Now, we consider the case when the area of fi is less 
than that of the disk D(x, 1/k), that is, 

|n|< 7T 

Let 

(42) 

(43) 



According to Lemma 2.3, 

P(x,Sl)   <   P{x,D(x,p))= [        \\n{k\\x-Z\\)\d( 
JD(x,p) 

[2ir    fp 

=   - /      /   \n(kr)rdrd9 
Jo    Jo 

In | \k I 
\n\ 

1 + 2 
n 
7T 

(44) 

D 

Definition 2.5 In agreement with standard usage, we will refer to the function 
f : R2 i—> C in the Helmholtz equation 

At + k2<f> = f (45) 

as the source, and to the solution <f> : R2 h-> C as the field generated by the source. 

The following two lemmas can be found, for example, in [1]. 

Lemma 2.6 Suppose that k € C+ is a complex number.  Then the Green's func- 
tion for the homogeneous Helmholtz equation 

A(f>+k2cf> = 0 

subject to the Sommerfeld radiation condition 

is given by the formula 

lim y/r    — ikS    = 0 

Gk(x,0 = -iHo{k\\x-^\ 

(46) 

(47) 

(48) 

where x = (r,6) and £ = (r',0') are arbitrary distinct points in R2 

Lemma 2.7  (Graf's Addition Formula) Suppose that the positive numbers u,v, 
w, a are such that u > v, and that 

Then 

w   = u  + v  —2uvcos(a) 

H0(w)=   J2   Hm(u)Jm(v)e™ 

(49) 

(50) 



The following lemma is an immediate consequence of Lemma 2.7. 

Lemma 2.8 Suppose that x, ( are two points in R2 such that \\x\\ > ||£||. Sup- 
pose further that (r,6) and (r',61) are the polar coordinates of the vectors x, (, 
respectively.  Then 

oo 

ffo(*||*-fl|)=   £   Hm(kr)Jm(kry^e-e'l (51) 

The following lemma is a direct result of Lemmas 2.6 and 2.2. 

Lemma 2.9 Suppose that k £ C+ is non-zero, and that tt C R2 is a domain of 
area //.  Then 

JQ\Gk(X,o\dt<2 ' Y VWI 

for all x G R2. 

V (52) 

Proof. Introducing the notation 

/(*) = / \Gk{x,£)\di (53) 
v it 

and using (48), we have 

I(x) = \(f | H0(z) \d£+ [ | H0{z) | d() , (54) 

with z = A;||x -£||/2. Combining (28) and (29) with (54), we immediately obtain 
the estimate 

I(x) < j (2fi + I \H\z\)\di] (55) 
4 \ Jnn{\z\<\} ) 

for all x € R2.  Now the lemma follows immediately from (55) and Lemma 2.4. 
D 

Remark 2.10 Denoting by Gk,a the linear operator C(tt) i—> C(ti) defined by 
the the formula 

(Gfc,n-0)(x)= [ Gk(x,0m^ (56) 

/or aZ/ ip € C(fi), we can rewrite (52) in the form 

f + Nf-^l 
||gfc,nlloo=2     '    V    VWV (57) 



The following lemma provides a sharper upper bound for ||C?A;,fi||oo when tt is the 
annulus A(R,h) (see (12)). Its proof is nearly identical to that of Lemma 2.9 
and is omitted. 

Lemma 2.11 Suppose that R > 0, h > 0 are two real numbers, and that k G C+ 

is non-zero.  Then for all x € R2 

L \Gk{x,Z)\d(<pi (58) 
A(H,h) 

where (i = h • ir • (2R + h) is the area of the annulus A(R, h). 

Remark 2.12 The preceding two lemmas show that there are two types of esti- 
mates (see formulae (52) and (58)) on \\Gk,n\\oo> depending on the shape of the 
domain.  When the domain is a disk, the estimate is of the form 

||Gjfe,n||oo<c-|ln(/x)|-/x, (59) 

whereas when the domain a annulus, the estimate is of the form 

\\Gk,n\\oo<c-fji. (60) 

Definition 2.13 A function (f> is said to be a radiation field in a bounded domain 
Q if and only if $ is a solution of the homogeneous Helmholtz equation (46) in 
Q; a function <f> is said to be a radiation field outside a bounded domain fi if and 
only if <f> is a solution of the homogeneous Helmholtz equation (46) subject to the 
Sommerfeld radiation condition (47). 

Lemma 2.14 Suppose that k is an arbitrary complex number, R is a positive 
real number, and <f> : D(R) i-> C is a radiation field in D{R). Then there exists 
a sequence of complex numbers { ctj }, j = 0, ±1, ±2,..., such that 

oo 

<f>(r,9)=    J2   am Jm(kr)etm8 = F^ Jkra, (61) 
m= —oo 

for all r < R and 0 < 6 < 2TT. 

The following two lemmas are widely known.  They can be found, for example, 
in [1]. 

Lemma 2.15 Suppose that k is an arbitrary complex number, R is a positive 
real number, and <f> : R2 \ D{R) i-> C is a radiation field outside D(R). Then 
there exists a sequence of complex numbers { ctj }, j = 0,±1,±2,..., such that 

oo 

rj>(r,0)=    J2   ßmHm(kr)eimß = F^Hkrß, (62) 
m=—oo 

for all r < R and 0 < 6 < 2TT. 
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Remark 2.16 It immediately follows from Lemma 2.1 that the series (61) con- 
verges inside D(R) if and only if a € YkR, and the series (62) converges outside 
D{R) if and only if ß G XkR. 

2.3    Scattering Problems 

The subject of this paper is the Helmholtz equation 

A<t> + k2(l + q)<f> = 0. (63) 

In (63), we assume that k is a complex number such that Im(k) > 0, and 
q : R2 \-> R1 is a smooth function; we will be referring to the function q as the 
scatterer. We further assume that the support of q is a bounded domain 0, and 
that q(x) > — 1 for all x € R2. We will be considering solutions cf> : Q H-> C of 
Equation (63) of the form 

<t> = <f>o + 4>, (64) 

with 4>o a radiation field in fi, and tp : R2 i—> C a radiation field outside f). We 
will be referring to <f> as the total field, to <f>0 as the incoming field, and to i\> as 
the scattered field. Furthermore, we will be referring to the determination of the 
scattered field from a given incoming field as the (forward) scattering problem. 
It is easy to verify that ij>(x) satisfies the equation 

A</> + JfcV = -k2q(<f>0 + i}>) (65) 

for all x e R2. 

Remark 2.17 It is well-known (see, for example, [19], [18], [20]) that the for- 
ward scattering problem is well-posed. More specifically, the problem can be re- 
formulated as the so-called Lippmann-Schwinger equation 

0(x) + k2 f G*(x,0?(0^(0# = -k2 I Gk{x,Z)q{()UZ)d(. (66) 

for the scattered field, or as the Lippmann-Schwinger equation 

4(x) + k2 f Gk(x, 0?(0#0# = &(*). (67) 

for the total field, for all x € R2 / either of the second kind integral operators (66), 
(67) is invertible, and the maximum norm of the inverse operator is bounded. 
That is to say, for k £ C+ and q £ C(R2) having the compact support 0, an 
incoming field </>o determines uniquely a scattered field ip, and i]> depends contin- 
uously on (f>o in maximum norm. 

11 



Defining the linear operator Gq
k : C(Q) y-> C(R2) by the formula 

(Gl ■ Mx) = k2 f Gk(x,t)q(t)1,{t)dt, (68) 

we can rewrite (66) in the form 

V> + GW = g, (69) 

with g € C(R2) defined by the formula 

a = GI4>0. (70) 

When 

Halloo < 1, (71) 

the equation (69) can be solved via the fixed-point iteration 

0o   =   0, (72) 

Vwi   =   9-Gq
k^m. (73) 

It follows from Lemma 2.9 that the condition (71) is met whenever the area of 
the domain tt is sufficiently small. The above discussion is formalized in the 
following lemma whose simple proof we omit. 

Lemma 2.18 Suppose that k <E C+ is a complex number, q € C(R2), and tt C 
R2 is a domain of area fi. Suppose further that 

§ + 8= — H\k\-^) 
k\2-\\q\U-pi. (74) 4 

Finally, suppose that p is sufficiently small so that 

6<1. (75) 

Then the fixed-point iteration (72), (73) converges to the solution of Lippmann- 
Schwinger equation (69). Moreover, 

\*l>{x) - V>m(x) |< Sm+1 (76) 

for all integer m > 0, and x € R2. 

When 0 is an annulus A(R,h) with h small, Lemma 2.18 assumes the form 
provided by the following lemma. 
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Lemma 2.19 Suppose that R > 0 and h > 0 are two real numbers. Suppose 
further that k £ C+ is a complex number, q 6 C(R2), and 0 = A(R, h) is an 
annulus of width h. Finally, suppose that h is less that \, and that 

H < T.|*MM|OO(2ä + 1)' (77) 

Then the fixed-point iteration (72), (73) converges to the solution of Lippmann- 
Schwinger equation (69). Moreover, 

| i>{x) - ipm{x) |< (TT- I k |2 -\\q\U2R + 1) • h)m+1 (78) 

for all integer m > 0, and x £ R2. 

2.4    Scattering in Circular Geometry 

In the remainder of this paper, we will be interested in two special cases of the 
scattering problem: in the first case, the compact support of the scatterer q is 
a disk D(p) with some p > 0; in the second case, the compact support of the 
scatterer is a domain Q lying outside the disk D(p), that is, flci?2\ D(p), see 
Figure 1. 

In this subsection, we construct simple analytical expressions for the incoming 
and the scattered fields in each of these two cases. Clearly, in the first case, the 
incoming field <^0 is a radiation field inside D(p), and is therefore generated by 
sources located outside D(p); the scattered field ^ is a radiation field outside 
D(p), and is therefore generated by sources inside D{p). We will be referring to 
this scattering problem as the interior scattering problem (see Figure l:(a)). The 
following lemma is a direct consequence of Lemmas 2.14, 2.15. 

Lemma 2.20 Suppose that p is a positive real number, and that the scatterer q 
has the compact support D(p).  Then 

(I) If the function <f>o : D(p) i—>• C is an incoming field to the scatterer q, then 
there exists a sequence a 6 Ykp, such that for all (r,9) € D(p), 

oo 

4(r,0)=    £   am Jm{kr)eime = Ff1 Jkra; (79) 
m= — oo 

(II) If the function ip : R2 H-> C is a scattered field from the scatterer q, then 
there exists a sequence ß € Xkp, such that for all (r,9) € R2 \ D(p), 

oo 

^(r,ö)=    £   ßmHm(kr)eimB = F^xEhrß. (80) 

13 



(a) 

Figure 1:  (a) Interior scattering where scatterer occupies the entire disk D(p). 
(b) Exterior scattering where the scatterer is located outside the disk D{p). 

In the second case of interest to us, we consider incoming field generated inside 
the disk D(p), and therefore the incoming field is a radiation field outside the disk. 
Since the scattered field ip is a radiation field outside ti, it is a radiation field inside 
D(p). We will be referring to this scattering problem as the exterior scattering 
problem (see Figure l:(b)). The following lemma is a direct consequence of 
Lemmas 2.14, 2.15. 

Lemma 2.21 Suppose that p is a positive real number, and that the scatterer q 
has a compact support outside D(p).  Then 
(I) If the function <j>0 : R2 \ D(p) i-> C is an incoming field to the scatterer q, 
then there exists a sequence ß € Xkp, such that for all (r, 6) e R2 \ D{p), 

oo 

Mr,0)=    E   ßmHm(kr)eimf> = Fe~1HkTß;. (81) 

(II) If the function ip : R? i-> C is a scattered field of the exterior scattering 
problem, then there exists a sequence a G Ykp, such that for all (r,0) G D{p), 

oo 

il>{r,0)=   £   amJm(kr)eime = F^Jkra. (82) 

2.5    Scattering Matrices 

One of principal analytical tools used in this paper are the scattering matrices; 
a scattering matrix is the linear mapping converting the incoming field into the 
scattered field, for a specified scatterer. For technical reasons, it is convenient to 
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have slightly different definitions of the scattering matrices for the interior and 
exterior scattering problems; thus, we define the interior and exterior scattering 
matrices separately. 

Definition 2.22 Under the conditions of Lemma 2.20, any a € YkRa defines an 
incoming field <f>o via (79); the resulting scattered field xp can be represented in the 
form (80), with ß € XkRo ■ Thus, there exists a linear mapping Si : YkR^ H-» XI-RQ 

such that 
ß = S\- a, (83) 

for all a € YkR^, and we will refer to SI as the interior scattering matrix corre- 
sponding to the scatterer q and frequency k. 

Remark 2.23 Obviously, for a fixed k € C+, the scattering matrix contains all 
the information that can be acquired by any scattering experiments performed 
outside the scatterer; we will refer to the collection of the scattering matrices 

{SI  I kGR1} (84) 

as the complete scattering data. 

Remark 2.24 In an actual scattering experiment, measurements are obtained 
at a finite collection of frequencies kj. Therefore, in a more realistic formula- 
tion of the inverse scattering problem, the scatterer q is to be determined from 
measurements of the scattering matrices at finite number of frequencies: 

{SI.   I j = l,2,...,JV}. (85) 

In the remainder of this paper, we will assume that our scatterer q has compact 
support D(Ro) for some positive number Ro, so that 

?M) = 0 (86) 

for all r > Ro. Furthermore, for a positive number R, we will denote by S^k 

the interior scattering matrix corresponding to the scatterer qD(R) (see (14)) and 
frequency k; in other words, 

S~R,k - SI™. (87) 

We will refer to the function qn(R) as the truncated scatterer. Obviously, at 
R = 0, the truncated scatterer is zero; it therefore generates no scattered field; 
in other words, 

Sö,k = 0. (88) 

Likewise, since qo(R) = Q for any R > Ro, we have 

SR,k = SI (89) 
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for all R>Ro. 

Closely related to operators S^ k are the so-called exterior scattering matrices 
associated with the scatterer qE{R) (see (11),(14)). 

Definition 2.25 Under the conditions of Lemma 2.21, any ß G XkR defines an 
incoming field <f>o via (81); the resulting scattered field ip can be represented in 
the form (82), with some a 6 YkR. Thus, there exists a linear mapping S^k : 
YkR i—> XkR, such that 

a = S+fc • ß (90) 

for all ß 6 XkR, and we will refer to S£ as the exterior scattering matrix corre- 
sponding to the scatterer qE(R) and frequency k. 

Remark 2.26 We will refer to qE(R) as the hollowed scatterer. Since the scat- 
terer q has compact support in D(Ro), the hollowed scatterer qE(R) is zero outside 
D(Ro).  Therefore, 

Stk = 0 (91) 

for all R > Re. 

2.6    Scattering from an Annuhis 

Given a pair of real numbers R > 0 and h > 0, we will refer to a scatterer 
q : R2 i—► R1 as an annular scatterer of inner radius R and width h if q(r,6) — 0 
for all r < R or r > R + h. Obviously, for any scatterer q, the scatterer qA(R,h) 
(see (12),(14)) is an annular scatterer. 

Conceptually, the incoming field to the annular scatterer qA(R,h) is generated 
by sources both inside the disk D(R) and outside the disk D(R + h) since it is a 
radiation field inside the annulus A(R, h). By the same token, the scattered field 
from the annular scatterer qA{R,h) is a radiation field outside the annulus A(R, h), 
and therefore has the form (61) inside the disk D(R), and the form (62) outside 
the disk D(R + h). The following two obvious lemmas formalize these facts. 

Lemma 2.27 Suppose that R, h are two positive numbers, and that A(R,h) is 
the annulus defined via (12). Then (f)0 : A(R, h) *-* C is an incoming field to 
A(R, h) if and only if there exist two functions <^'n) : D(R + h) i-> C, ip^ : 
R2 \ D(R) ^ C such that 

^o = ^(t'n) + V'M, (92) 

where <f>^ is a radiation field in D(R + h); in other words, there uniquely exists 
® € Yk(R+h), such that for all (r, 8) 6 D(R + h), 

<f>{m\r,9) = Ff1JkTa] (93) 
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and where 0(*n) is a radiation field outside D(R); in other words, there uniquely 

exists ß G XkR, such that for all (r, 6) G R2 \ D(R), 

^in\r,6) = F9-
1Hkrß. 

Furthermore, the decomposition (92) is unique. 

(94) 

Lemma 2.28 Under the conditions of Lemma 2.27 Suppose that tp : R2 i-+ C is 
the scattered field generated by the annular scatterer A(R,h). Then there exist 
two sequences & G YkR and ß G Xk(R+h.) such that inside the disk D{R), 

il>(r,0) = Ff1Jkra, 

and outside the disk D(R + h), 

4>(r,d) = Fe-
1Hkrß. 

(95) 

(96) 

Remark 2.29 Abusing the notation somewhat, we will be referring to the coef- 
ficients a,ß in (93), (94) as the incoming potential, the coefficients öt,ß in (95), 
(96) as the outgoing potential. 

Obviously, given an annular scatterer qA(R,h), the combination of Lemmas 2.27 
and 2.28 defines a linear mapping Yk(R+h) x XkR H-> Xk(R+h) x YkR converting 

the incoming potential (a, ß) G YkR x XkR into the outgoing potential (/?, ä) G 
XkR x YkR. Thus, we are led to the following definition. 

Definition 2.30 For an annular scatterer qA(R,h), the scattering matrix SRk is 
the mapping Yk(R+h) x XkR t-* Xk(R+h) x YkR such that for any incoming potential 

(a,ß), the outgoing potential (ß,ä) is given by the formula 

ß 
a 

oh 
0R,k 

a 

ß 
(97) 

Remark 2.31   The scattering matrix SRk can obviously be partitioned into four 

submatrices 
Sßa      Sßß qh     _ öR,k — (98) 

so that 

ß   =    Sßaa + Sßßß, 

a   =   Saaa + Saßß. 

(99) 

(100) 
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2.7    Scattering from Two Disjoint Scatterers 

When several disjoint scatterers are irradiated by an incoming field, we wish to 
calculate the scattered field under the condition that we know how to solve the 
scattering problem associated with each scatterer separately. In other words, 
if we are given the scattering matrices of individual scatterers, we would like 
to combine them and obtain the scattering matrix associated with the whole 
ensemble of the scatterers. In this subsection, we build the necessary analytical 
machinery. Although the discussion is confined to two disjoint scatterers, all 
conclusions can easily be extended to the case of multiple scatterers. 

2.7.1     Lippmann-Schwinger equation for a Part of the Scatterer 

Suppose that the scatterer q consists of two separate scatterers occupying two 
disjoint domains üi and f)2: 

fiinfij  = 0, (loi) 

ftiUfi2   =   ft. (102) 

Then the Lippmann-Schwinger equation (67) can be rewritten either as 

(*) + k2 I Gk(x, 0?(0*(£K = *>(*) - k21 Gk(x, tMOttOdZ,    (103) 
Jill JQo 

or as 

<j>(x) + k2 f   Gk(x,0q((WH = M*) - k2 I   Gk{x,i)q{£)<t>{()d(.      (104) 
Jil2 JQi 

Introducing the functions V'l : R2 >-* C and ip2 '• R2 >-> C via the formulae 

frix)   =    -k2 I'Gk(x,0q(0Htn, (105) 

^(x)   =   -k2 f   Gk(x,0q(0<f>UH, (106) 

we observe that (103) can be viewed as the Lippmann-Schwinger equation (see 
(67)) on the domain Hi for the total field <j> corresponding to the incoming field 

<t>oi = (f>o + ^2- (107) 

Similarly, we observe that (104) can be viewed as the Lippmann-Schwinger equa- 
tion on the domain fi2 for the total field <f) corresponding to the incoming field 

^O2 = 0o + ^i. (108) 

The following obvious lemma formalizes the above discussion. 
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Lemma 2.32 Suppose that the scatterer q consists of two separate scatterers 
occupying two disjoint domains fli and fi2- Suppose further that (f>o : fii U $72 i—► 
C is the incoming field to the scatterer q and that <j> : Q\ U f22 i-> C is the 
corresponding total field. Finally, suppose that the four functions ipj : R2 H-► C, 
<f>oj : Oj (->■ C, for j = 1,2, are defined by the formulae (105)-(108). Then 

(I) For j = 1,2, Tpj is the scattered field corresponding to the incoming field 
(j>oj to the scatterer in fij. 

(II) The incoming field to one of the scatterers is the superposition of the 
original incoming field <f)Q and the scattered field from the other scatterer: 

<hi   =   ^0 + ^2, (109) 

4>02   =   <^o + V>i- (no) 

(III) The total field is the superposition of the original incoming field and the 
scattered fields from the two disjoint scatterers: 

<f> = <t>0 + <I>1 + 1p2- (HI) 

2.7.2    Merging Two Scatterers 

In this subsection, we examine the process by which the Lippmann-Schwinger 
equations for the regions fii and fi2 are merged, producing the Lippmann- 
Schwinger equation for the domain fii U Q2. It turns out that when the area 
of fii is small, the result assumes a particularly simple form (see Lemmas 2.34 
and 2.37). 

Defining the linear operators Gj : C(Q,j) i—► C(R2) by the formula 

(Gj ■ 1>){*) = k2 f   Gk(x,0q(0mdt, (112) 

for j = 1,2, and using the formula (111), we rewrite the Lippmann-Schwinger 
equations (103), (104) in the form 

(I + G1)-^ + G1-^2   =   -GWo, (113) 

G2 ■ </>i + (/ + G2) ■ ^2   =   -GWo- (114) 

The following lemma is an immediate consequence of Remark 2.17. 

Lemma 2.33 Under the conditions of Lemma 2.32, suppose that the operators 
Pj : C($lj) t-> CR2), Bj : C(Oj) i-> C(R2) are defined by the formulae 

P3   =   (I + Gj)-\ (115) 

Bj   =   -(I + Gi)-
1-Gi = -Pi-Gj, (116) 

for j = 1,2. Then each of the operators P\, P2, B\, B2 is bounded in the 
maximum norm. 
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Lemma 2.34  Under the conditions of Lemma 2.32, suppose that the 
(60) is valid on üx; that is, there exists a constant c such that 

estimate 
• 

WGkfiiWoo < C- (I, (117) - 

where fi is the area offli.   Then, for all sufficiently small y,, there exist unique 
functions V>i : R2 ■-> C and ip2 : R2 i-» C such that (113) and (114) are satisfied. 
Furthermore, 

M*)   =   B1-{I + B2)<f>0 + O(fi2), (118) 

M*)   =   B2-{I + B1-(I + B2)}<j>0 + O(fi2), (119) 

Mx) + M*)   =   {B2 + (I + B2)-B1-(I + B2)}<f>0 + O(fi
2). (120) 

Proof. Rewriting (113) and (114) in the form 

rp!   =   B^fo + fo), (121) 

fa   =   £2(V>i + ^o), (122) 

and substituting (122) into (121), we obtain 

(/- Bl .B2)ipx = B^I + B2)<f>0. (123) , 

It immediately follows from the combination of (117), (112) that there exists a 
constant c\ > 0 such that 

* 

11^1 ||oo  < Ci • Halloo • fl, (124) 

for all // > 0. Combining (124) with (116), we immediately see that there exist 
positive constants c2, c3 such that 

ll-BlH     <     C2-fi, (125) 

\\Bi-B2\\    <   es-//, (126) 

for all y > 0. Therefore, for all sufficiently small y, 

CO 

(I-B1-B2)~
1= J2(B,-B2r. 

TO = 0 
(127) 

Combining (127) with (123), we have 

V>i= (fl(B1-B2)
m)B1(T + B2)4>0. 

\m=0                            / 
(128) 

Finally, combining (128) with (125), (126), we obtain > 

i>1 = B1(I + B2)<j>Q + 0(y2), (129) 

which proves (118). The substitution of (129) into (122) yeilds (119). D 
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Remark 2.35 For any u € C(ttj), the function v 6 C(R2) defined by the for- 
mula 

v = -(I + Gj)-1 ■Gru = Bj-u (130) 

is obviously a solution of the Lippmann-Schwinger equation 

(I + Gj) ■v = -Gj-u (131) 

on the domain Oy.   In other words, for each of j — 1,2,  Bj is the operator 
converting the incoming field into the scattered field. 

Remark 2.36 Due to Remark 2.35, (120) can be interpreted to mean that the 
total scattered field ifii + fa is a superposition of five scattered fields 

fa + v>2 = £ «i + <V)> (132) 
.7=1,5 

where 

(133) 

(134) 

(135) 

(136) 

(137) 

Each of the five scattered fields is generated in a scattering process described as 
follows: 

1. The incoming field <f>o gets scattered by the scatterer in Q,i, generating the 
scattered field v\.  We denote this scattering process schematically by the chart 

<j)0 —> fti —> ui; (138) 

2. The incoming field <J>Q gets scattered by the scatterer in Ü2, generating a scat- 
tered field V2-  We denote this process by the chart 

(j)0 —► 02 —► v2; (139) 

3. The scattered field V\ enters the scatterer in Vl2 as an incoming field, generating 
the scattered field V4.  We denote this process by the chart 

(j)Q —> fii —► vi —> Q2 —► v3; (140) 

4. The scattered field v2 enters the scatterer in Qi as an incoming field, and is 
again scattered by f2i, generating a scattered field V3.  This process is denoted by 

<f>0 —► fi2 —► v2 —► üi —► v4; (141) 
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V!   =   Bx • <l>0, 

v2   =   B2 ■ 4>o, 

v3   =   B2 ■Bi ■ <f>0i 

v4   =   Bi ■B2 • <t>0, 

v5   =   B2 ■Bi ■ B2 ■ <t>o- 



5. The scattered field v3 enters the scatterer in 02 as an incoming field, generating 
the scattered field v5. This process is denoted by the chart 

</>a Ü0 V2 fix v4 02 t>5- (142) 

The following lemma is a restatement of Lemma 2.34 in the special case when 
J7i is the annulus A(R, h), and 02 is the disk D(R). 

Lemma 2.37 Suppose that R>0,h>0are two real numbers and that k G C+. 
Suppose further that <j)0 : D(R+h) H-> C is an incoming field to the disk D(R + h); 
in other words, there exists a € Yk(R+h), such that 

<f>o{r,6) = FQ
1
 ■ Jkr ■ a (143) 

inside the disk D(R + h). Finally, suppose that ip : R? (-► C is the corresponding 
scattered field from D(R + h).  Then for sufficiently small h > 0 and r > R+h 

M,8) =  X>,M) + 0(/i2), 
i=i,5 

wh ere 

Vl(r,9) = Ff1 

v2(r,6) = Ff1 

v3(r,8) = Ff1 

v4(r,9) = Ff1 

v5(r,0) = Fi' 

Hkr ■ Sßa ■ a,     r > R + h, 
Hkr ■ Sä,* • a>     r> R, 

Hkr ■ SRJ ■ Saa -a,     r > R, 

Hkr ■ Sßß - SRJ. -a,     r > R + h, 
Hkr ■ S^k ■ Saß ■ SRJ. -a,     r>R. 

(144) 

(145) 

(146) 

(147) 

(148) 

(149) 

The following lemma is analogous to Lemma 2.37. it is a restatement of Lemma 
2.34 in the special case when nx is the annulus A(R, h), and f)2 is the disk E(R). 

Lemma 2.38 Suppose that R, h are two positive numbers and that k € C+. 
Suppose further that <f>0 : E(R) i-> C is an incoming field to the scatterer qE(R), 
and that xß : D(R) 1—► C is the corresponding scattered field.   Then 

M,8) = Y,Mr,8) + 0(h2),   r<R, 

wi th 

Mr, 8) = Ff1 

Mr,0) = Ff1 

Mr, 8) = Ff1 

Mr, 8) = Ff1 

Mr, 8) = V 

Jkr • Saß ■ ß,        r < R, 

Jkr ■ S&+hik - ß,     r < R + h, 

Jkr ■ S£+hk • Sßß- ß,     r < R + h, 

Jkr ■ oaa ■ SR+hk ■ ß,      r < R, 

Jkr ■ S%+htk ■ Sßa ■ S%+htk ■ ß,      r < R+h. 

(150) 

(151) 

(152) 

(153) 

(154) 

(155) 
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Remark 2.39 The five scattered fields ^-, j = 1,5 in (150)-(155) are generated 

in the scattering process described as follows: 

1) 6>->A(i2,Ä)-^n (156) 

2) <l>0^E(R + h)->il>2, (157) 

3) <j>o-+A(R,h)-+tl>i-+E(R+h)^tl>3, (158) 

4) <ß0->E(R + h)^nl>2-+A(R,h)^nJ>i, (159) 

5) <f>0-*E{R + h)^ip2^A(R,h)-+rJ>4^E(R+h)-+ilj5. (160) 

3    Riccati Equations for Scattering Matrices 

It turns out that the scattering matrices S~k and 5jfe, viewed as functions of r, 
satisfy certain matrix Riccati equations with respect to r. In this section, we 

derive these Riccati equations. 

3.1     Scattering Matrices for Thin Annuli 

In this subsection, we obtain approximate expressions for the four submatrices 
S0a, Sßß, Saa and Saß of the matrix (98) when the annulus A(R, h) is thin (i.e., 
h is small). In this case, the scattering from qA(R,h) is weak, and Spa, Sßß, SQa 

and Saß assume a particularly simple form. 

Lemma 3.1 (Born Approximation) Suppose that R > 0, h > 0 are two real 
numbers and that k € C+. Suppose further that <f>0 : A(R, h) K-> C is an incoming 
field to the annular scatterer qA{R,h), and that <f>$ is the restriction of <j>0 on the 
circle CR C R2 ■ Finally, suppose that $ : R2 ^ C is the scattered field. Then 

for small h, 

0(r, 9) = i-h-k*-*-RFfl   Jkr .HkR.F.QR.4>n^ 0(h2) (161) 
Li 

for all r < R, and 

^ e) = i-h-V-*-RFfl   JkR .Hkr.F.QR.tf + 0(h2) (162) 

for all r > R + h. 

Proof.   The scattered field ip satisfies the Lippmann-Schwinger equation (see 

Remark 2.17) 

iß(x) + k2 [       Gk(x, 0<i(0H0d( = -k2 [       Gk(x,Z)q(Z)MOdZ    (163) 
JA{R,h) JA(R,h) 

23 



whoes solution can be approximated by the sequence { ij>m,  m =  1,2,... } 
generated by the fixed-point iteration (72), (73) so that 

M*)    =   k2 f        Gk(x,t)q(t)MtW (164) 
JA(R,h) 

M+i   =   g-Gq
kipm,   m = l,2,...; (165) 

usually, V>i is referred to as the Born approximation to the scattered field ip. 
According to Lemma 2.19, there exist positive numbers e > 0, c> 0 such that 

\ *!>(x) - ^(x) \< c ■ h2 (166) 

for all h < e, x € R2. The combination of (164), (48) and (51) yeilds 

■j rR+h    /•27T 

Mr,B)   =    -k2 /     q(r',e')Mr',ö')x 
4        JR JO 

oo 

£   Jm(kr)Hm(kr')eim^-e'\'dr'd9\ (167) 
m = — oo 

for all r < R, and 

ifcM)    =    T*
2
/        /     q(r',e')Mr\9')x 

4      J.R        Jo 
oo 

£   Jm(/cr')i/m(Ä:r)e'm(e-e\VrW, (168) 
m= —oo 

for all r > i? + h. Obviously, for any function g <E Cl[0, oo), 

/       g(t)dt = h ■ (g(R) + 0(h)), (169) 

and combining (167), (168) with (169), we obtain 

l °° / /•2-7T \ 

Mr,8)   =    jk2hR   Y,    (Jm(kr)Hm(kR)        e~'me'q(R, 8')<f>0(R, ^dff) eimB 

^ m=-oo  V JO / 

+0(h2). (170) 

for all r < R, and 

l °° / /-27T \ 

^(r,0)    =    -k2hR   J2    [Jm(kR)Hm(kr)        e~ime'q(R,6')<f>0{R,e')dO') eimS 
4
 m=-oo  V JO / 

+0(/i2). (171) 

for al\r>R+h. Using the notation introduced in Section 2.1, (170), (171) can 
be rewritten in the form 

Mr, 0) = h%-k22irR ■ V • Jkr ■HkR-F-QR-<f>* + 0{h2), (172) 
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for all r < R, and 

V>i(r,0) = hl-k22irR ■ Ff1 ■ JkR ■ Hkr ■ F ■ QR- <f>* + 0(h2), (173) 

for all r > R + h. Now, the lemma follows from the combination of (166), (172) 
and (173). □ 

The following lemma provides the desired approximate expressions for the scat- 
tering matrix SRk. It is a direct result of formulae (161) and (162). 

Lemma 3.2 Suppose that under the conditions of Lemma 3.1, the four subma- 
trices of the scattering matrix Sßa, Sßß, SaQ and Saß defined by the formulae 
(97), (98)).  Then 

Sßa = hjk2R- JkR- F -QR- F-1 ■ JkR + 0(h2), (174) 

Sßß = hjPR-JkR-F-QR-F-'-HkR + Oih2), (175) 

Saa = hjk'R-HkR-F-QR-F-'-JkR + Oih2), (176) 

Sa0 = hjk2R- HkR- F ■ QR- F-1 ■ HkR + 0(h2). (177) 

Proof. We will prove only formula (174), the proofs for the rest being similar. 
According to Lemma 2.27, an incoming field <f>o to A(R, h) has the form 

(f>o = Fe-
1{Jkra + Hkrß}, (178) 

with a G Yk(R+h), ß £ XkR. Setting ß = 0, and substituting (178) into (161), we 
obtain the scattered field ip outside D(R + h) in the form 

V>(r, 6) = Fi'Hkrß = hjk2R ■ F^lHkTJkRFQRF-lJkRa + 0(h2),       (179) 

that is, 

ß = h-k2R ■ JkRFQRF-lJkRa + 0(h2). (180) 

On the other hand, since ß = 0, (99) assumes the form 

ß = Sßaa, (181) 

and (174) follows from the combination of (180), (181). □ 
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3.2 A Riccati Equation for the Scattering Matrix S 

In this subsection, we demonstrate that the scattering matrix S~k as a func- 
tion of r is a solution of a Riccati equation. To this end, we calculate the 
differences'^^ k — SRk, to second order in h, by observing that the scattered 
field from the scatterer qD(R+h) is the result of combined effect from the two 
scatterers qD(R) and qA(R,h)- 

According to Lemma 2.20, an incoming field inside the disk D(R + h) has the 
form 

<j>o = Fahret, (182) 

with Q € Yk(R+h)- The corresponding scattered field outside the disk D(R -f h) 
has the form 

V> = F^Hkrß, (183) 

with ß € Xk(R+h)- By the definition of the scattering matrix SR+hk (see (87), 
(83)) 

ß = S^htka. (184) 

The following result is an immediate consequence of Lemmas 2.37 and 3.2. 

Lemma 3.3 Suppose that R > 0, h > 0 are two real numbers, that <f>Q : D(R + 
h) i—> C is an incoming field to the disk scatterer in D(R + h), and that iß : R2 i—> 
C is the scattered field.  Then 

ß = [sR,k + h^k2(JkR + S-R,kHkR)FQRF-\HkRS^k + JkR)} a + 0(h2). 

The following theorem is an immediate consequence of (184) and Lemma 3.3. 

Theorem 3.4 (Riccati Equation for the Scattering Matrix S~) For any k € C+ 

and all r > 0, the scattering matrix S~k : Ykr i—> Xkr is a solution of the Riccati 
equation 

-7^ = ^rk2{Jkr + S;kHkr)FQrF-\HkrS;k + Jkr). (185) 
ar Z 

3.3 A Riccati Equation for the Scattering Matrix S+ 

In this subsection, we derive a Riccati equation for the exterior scattering matrix 
Sfk defined in (90). We will only state the results, since their proofs are quite 
similar to those for the interior scattering matrix in the preceding subsection. 

According to Lemma 2.21, to E(R) (the exterior of the disk D(R)), an in- 
coming field assumes the form 

<f>o(r,0) = Fe-
1Hkrß, (186) 
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with ß £ XkR. The corresponding scattered field inside the disk D(R) assumes 
the form 

^(r,0) = Fg-
1Jkra, (187) 

with a £ YkR. By the definition of SRk (see (90)), 

a = S+tkß. (188) 

Since 
E{R) = E(R+h)UA(R,h), (189) 

the field ^ scattered by the scatterer qE(R) can be viewed as the field scattered 
by the combination of scatterers in A{R, h) and E(R+ h). The following lemma 
is analogous to Lemma 2.37, and is an immediate consequence of Lemmas 2.38 
and 3.2. 

Lemma 3.5 Suppose that R, h are two positive numbers and that k £ C+. 
Suppose further that (f>o : E(R) i—> C is an incoming field (186) to the scatterer 
aE(R)> and that xj) : D(R) H-> C is the corresponding scattered field (187).  Then 

ß   =   I S^+hik + h k2 [Hk(R+h) + S^+htkJk(R+h)) FQR+HF'
1
 x 

(jKR+h)S++htk + Hk(R+h))}a + 0(h2). (190) 

The following theorem is an immediate consequence of (188) and Lemma 3.5. 

Theorem 3.6 (Riccati Equation for the Scattering Matrix S+) For any k £ C+ 

and all r > 0, the exterior scattering matrix Sfk : Xkr i-* YkT is a solution of the 
Riccati equation 

-r1 = -l-^-k2(Hkr + S+kJkr)FQrF-\JkrS+k + Hkr). (191) 
ar Z 
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